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I. INTRODUCTION

There are a number of applications, such as the monolithic charge and the
traveling charge, for which very high burning rate (VHBR) propellants are
needed. These propellants generally contain HUX or RDX and/or triamino-
guanidinium nitrate (TAGN), together with a borohydride such as one of the
HIVELITES (Teledyne-McCormick-Selph). The borohydride, which is often a BnHn=
salt such as K2B10H10 or K2 B1 2 H1 2 , greatly accelerates the burning rate of the
propellant. This effect is quite well-known, and h s2 ble the subject of
several workshops and cf a large number of reports. I2I

The purpose of the present work is to elucidate the chemical mechanisms
responsible for the burning rate acceleration of HMX and RDX propellants by
BnHn salts, with the ultimate goal of optimizing propellant formulations for
actual use, i.e., maximum "catalytic" effects with minimum sensitivity. This
work has been focussed on the initial stages of the nitramine decomposition
process; however it should be remembered that it is possible that catalysis
may also occur at a later stage of the combustion process, when the initial
products such as H2 CO, NO2 , N2 0, HCN, etc., are reacting with each other.

Previous reports in this series5 ' 6 have described pyrolysis-GCIMS studies
on RDX and on6RDX-K 2 Bl 2 Hl 2 mixtures, 5 and on a series of HMX-TAGN propellant
compositions, some uncatalyzed and some catalyzed with K2 B1 oH1 0 . Reference 5is considered to be Part I of this series, and Reference 6 to be Part II.

The present report is a summary and critical analysis of data in the
literature on borohydride catalysis of the initial stages of nitramine
decomposition, together with a discussion of some possible chemical mechanisms
that may be involved.

I1. EFFECT OF ADDED K2B10H1o AND K2 B1 2 H1 2 ON THERMAL DECOMPOSITION OF
THE NITRAMINES HIfL AND RDX

In this section we will consider the effect 5 - 1 3 of added K2B1 0H10 = and
K2 BI2 HI 2 salts on the rates and proauct @stributions of the nitramines HMX
and RDX. The decomposition of mixtures- of pure salts and of the pure
nitramines will be considered separatel).

A. Effect of Added Catalyst on Decomposition Rates

There are few if any auantitative kinetic studies of the decomposition of
HMX and RDX in the presence of B1 oHI 0 = and B1 2111 2 salts; however there is
some qualitative information in support of the view that addition of the above
salts does accelerate the early stages of thermal decomposition of these
materials.

First, thermal analysis studies have been perforned13 on mixtures of RDX
with K2 B1 2 H1 2 , with ((CH 3 ) 4 N)gBI 2 HI 2 and with NaBH4 ; these show that the
normal RDX exotherm at ca 240 C is shifted to the noticeably lower temperature
of ca 200*C, and appears to coincide with the normal RDX melting endotherm at
this temperature. The mixtures used contained 15-50% of the boron compound.
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This same effect is also observed1 3 when RDX is mixed with
((CH 3 ) 4 N) 2 Bl 2 HI 2 that has been heat treated at 480'C; but the acceleration
effect is almost eliminated when the heat-treatment takes place at 7600 C. It
also seems worth mentioning that little if any accefiration is observed when
elemental boron is substituted for the above salts.

The above DSC studies13 employed open pan- (no lids) with argon purge
flow of 3n ml/min. It was pointed out that there was thus little chance for
gas to collect over the sample; the above effects were thus believed due to
solid/liquid phase interactions.

Se'zond, a series of experiments was reportedI 0 ' 1 1 in which RDX, alone and
in mixtures containing 29% K2BI2HI2, was partially deccmposed at temperatures
of 200-215*C. The residues from the incomplete decomposition of these samples
were analyzed by HPLC; it was found that addition of K2 BI2 H, 2 led to more
rapid disappearance of RDX and appearance of its mononitrosoderivative
(MRDX). This indicates that K2 B1 2 H1 2 accelerates dezomposition of RDX, in
agreement with the DSC results described in the preceding paragraphs.

B. Effect of Added Catalyst on Product Distributions

Gaseous-Product Catalyst Effects. There is little quantitative
information available on the effect of added BnHn sal slyn gaseous-product
distributions. It was found from pyroprobe-GC studies ' that the relative
amounts of HCN, NO, and NO2 were greater for RDX decomposed in the presence of
borohydride catalysts than for RDX decomposed alone. Tantalum hydride and
tantalum oxide did not afect the decomposition producI to the same degree as
the borohydride catalysts. Pyroprobe-GC-FTIR studies indicated that the
main effect of added borohydride catalyst was an increase in CO2 formation
relative to N2 0.

Catalyst Effects on Formation of Less-Volatile Products. A number of
less-volatile products have bgeg He!Ui~e•as being formed from the 5,6
decomposition of HMX and RDX. , These include 1,3,5-triazine; 5 ' 6

1,3,5-triazine N-oxide;5,6 aa•garial(s?) with parent peak at n/e = 97
(protonate; frm, m/e = 98), 1 suglly written as 1, 3 ,5-trfazige C-oxide;
formamide; N-meth fWgmamide; ' N,N-dimethylforgade;
dimethyln trosoamine; ' dimethylamino-acetonitrile; ' an unidentitied
compound, 0 hereinafter referred to as Unknown A (1,2,4-oxadia~le?) with its
parent peak at m/e = 70; and a number of unknown compounds. '

The effect of added K2 BIoHI 0 = and K2 B1 2 H1 2 on formation of 1,3,5-
triazine and its N-oxide seems to be to reduce the relative extent to which
they are formed. 5 ' 6  These catalysts also reduce formation of the 1,3,5-
triazine oxide (C-oxide?) detected by Snyder, Kremer and Reutter, at least
relative to dimethylformamide, dimethylacetonitrile and dimethylnitrosoamine.

On the other hand, added K2BoHI0= and K2 B1 2 H 2 = lead to an increase in
the relative amounts of dimethylaminoacetonitrile, N-methylformamide, N,N-
dimethylformamide and dimethylnitrosoamine formed.

Unknown A exhibits an interesting dependence on addition of catalyst; at
low temperatures added K2 B1 2 H1 2 = leads to a decrease in its formation from RDX
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decomposition, while at higher temperatures an apparent increase in its

formation is observed on addition of K2B12HI2

III. THERMAL BEHAVIOR OF PURE SALTS OF THE ANIONS BIoH1 0 = AND BI2H12.

In understanding the mechanisms by which the anions B1O HIO and B12H12m
catalyze the decomposition and combustion of HMX and RDX, it Is necessary to
understand the thermal behavior of these materials separately. In the present
section, the thermal behavior of salts of B loH 1o and B1 2H1 2 = will be
summarized; the emphasis will be on thermal y-stable, non reducible cations
such as metals since this will eliminate complications due to decomposition
reactions involving the anions. In the following section the behavior of HMK
and RDX will be summarized.

It has been reported17 that when metal (or other not-readily-reduced
cation) salts such as Cs 2 B1 oH1 0 and Cs2Bj2H1., were heated under vacuum in
sealed tubes to temperatures of 600-800 C, they were recovered unchanged
except for melting. Since cesium and potassium are both alkali metals, the
potassium salts K2 BIoH1 0 and K2 1B H that are of interest as propellant
combustion catalysts may well behave similarly.

Kuznetsov and Klimchuk' 8 have described the preparation, infrared spectra
and thermal properties of the B1 2 H 1 2 salts of sodium, rubidium, cesium,
lithium and hydronium. The thermal studies were mainly of the thermo-
gravimetric and DTA types, and were carried out ander air. It was found that
the thermooxidative degradation of all of the compounds began with a distinct
exothermic effect at about 300 0 C, with the stability increasing appreciably
from the lithium to the cesium salt. This thermooxidative degradation was
accompanied by an increase in weight of the compounds; the increase in weight
was linked by infrared studies to replacement of B-H bonds by B-O bonds.
However no definite composition could be assigned to these pyrolysis products.

Note that in the studies described in Reference 1, thermooxidative
degradation of these materials was observed, while in Reference 17 it was
stated that the materials were unchanged; this discrepancy is probably due to
the fact that the studies of Reference 18 were carried out under air, while
those of Reference 17 were carried out in a sealed tube. This seems relevant
to the question of the behavior of these materials in the presence of nitro
compounds such as HMX and RDX, since such materials would also be expected to
provide an oxidizing environment.

In a study19 of sodium closo-dodecaborate tetrahydrate, it was found that
the material gave two endotherms at 140 0 C and 195°C: these were connected with
the two-stage elimination of water (two molecules at each stage). TWe
anhydrous salt existed in the region 195-505*C, and above 5050C this was found
to undergo exothermic thermooxidr ive degradation marked by an increase in
weight corresponding to one oxygei, atom per formal unit of the anhydrous
salt. This mono-oxygenated product burned on being heated above 830°C.
Presumably the heating was carried out under air, in view of the occurrence of
oxidative processes.

Another Russian paper20 described thermogravimetric and DTA studies on a
series of mixed potassium, rubidium and cesium dodecahydro-closo-dodecaborate
halides. The salts investigated had the composition M2 B1 2 H1 2 .MX, where M was
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K, Rb or CS and X was Cl, Br or I. The thermoanalytical studies were
performed under air at a heating rate of 9 K per minute, and it was found that
the thermooxidative degradation of the mixed salts began in the range 510-
570*C, regardless of the nature of the cation and the halogen. This
degradation was accompanied by an increase in weight; this increase was
attributed to replacement of the B-H bond by B-O and to a gradual conversion
of the tetrahydroborate ion into alkali metal borates and B2 03 .

The thermal decomposition of the hydrogen analogs_2 y 2 Bl 2 Xl2 .nH2 0O, where X
is H, C1, Br or I and n is 4-12, has been investigated by mass spectrometry
and IR spectroscopy in the temperature range 20-800*C. When H2 Bl 2 Hl2.6H2 0 was
heated to 400*C, evolution of water and hydrogen was observed. Above 400 0 C,
boron ions (B +) were seen for all compounds investigated. The B1 2C112 and
B12Br,2" ions also showed BXK, BX2 and BX3+. It was argued that the B+ ions
resulted from ionization of elementary boron, since their temperature
dependance had the same form as that of elementary boron.

In the course of studies on a variety of boron hydride derivatives,
thermal analysis studies were performed on some B1 oHI 0 = and B1 2 H1 2 Lalts. 22

The cesium salts of B1 2HI2 gave only two exothermic effects with
"insignificant" gassing at 616-655*C. It was stated that nearly one mole of
H2 was given off per mole of salt in this temperature range; however the
identification of H2 as the gas was not described. The infrared spectrum for
Cs 2Bl 2 HI2 after heating to 700*C retained all primary absorption bands of the
untreated salt. Curves were also given for Cs2 B1 oHI 0 which suggested that
this compound behaves similarly. If substantiated, this report of H2
evolution suggests that slight changes involving H2 evolution m, also have
taken place in the sealed-tube vacuum heatings described in Refei-nce 17, and
quite possibly in all such experiments on these compounds. The studies
described above were in vacuum. The effect of medium was noted only for the
cesium and tetramethylammonium B1 2H1 2= salts. When the experiments were
carried out in argon, behavior was similar to that in vacuum and when it was
carried out in air, exothermal thermooxidative behavior was observed at 200-
300*C, accompanied by an increase in weight.

Thermolysis studies on ((CH 3 ) 4 N)2 Bl 2 HI 2 were also described;22 the
situation is complicated by the presence of the tetramethylamino group. The
authors felt that the decomposition involved destruction of the
tetramethylamino cation and possibly formation of a B-N bond. Thermal studies
on (NH3 ) 2 B1 oH1 2 and (NH4 ) 2 B1 oH1 0 are also described.

Duff and Decker 1 3 described a variety of thernoanalytical studies on
K2Bl2HI2 and on ((CH 3 ) 4 N) 2 B1 2 Hl 2 . These studies were performed in an
atmosphere of argon. It was found that the potassium salt gave a weak
endotherm at 780C, corresponding to about 7 percent weight loss, and was
thereafter stable to at least 460C. The tetramethylammonium salt, on the
other hand, remained stable until a temperature of about 3600% was reached, at
which temperature it exhibited an endotherm and an 18.5 percent weight loss.
The catalytic ability of these salts toward RDX decomposition was not
decreased by preheating at 360'C.

It is tempting to try to explain the above weight losses 1 3 in terms of
loss of water molecules from stable hydrates. Note the above description19 ofa similar phenomenon involving sodium dodecaborohydride. This would be in
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agreement with the following: (a) The 7 percent weight loss of the potassium
salt corresponds approximately to that expected for loss of one molecule of
water from a hydrate, and the 18.5 percent weight loss for the tetra-
methylamino compound corresponds approximately to loss of four molecules of
water from a hydrate; (b) these weight losses do rot remove the catalytic
effect of the salt- on RTX decomposition. However the water-loss hypothesis
does not explain the slight discoloration noted. 1 3

Several other publications23,24 appear to zontain information on thermal
rroperties of B10H10 and B 2 HI2- salts, but it has not yet been possible to
o)btain these papers in English translation.

On the basis of the above, it is possible to draw several conclusions

about the thermal behavior of tne pure B1 OH1 O= and B12HI2= salts. First, in
the absence of air they seem stable to temperatures wel above the initial
decomposition temperatures of HW and RDX. Second, at elevated temaperatures
they seem to undergo oxidation reactions with the oxygen of air; it does not
seem unreasonable to suppose that analogous behavior might occur in the
presence o•f other oxidizing atmospheres such as might be provided by nitrogen
oxides, or 1) the nitro groups in liqtiefied Hi-K or RDX.

IV. THERMAL DECOMPOSITION BEHAVIOR OF PURE HHX AND RDX

The thermal decomposition chemistry of pure HW and RDX, together with
some possible chemical mechanisms, have been reviewed previously. 2 5 - 2 8 The
present report will therefore be concerned only with updating these reviews
with regard to new results in those areas that seem most televant to the
question of mechanisms of borohydride catalysis. These include (a)
identification of a number of products involving reduction, as well as
reassignment of the structures assigned to some very common ion masses (such
as m/e 46, 74, 75) that have been previously observed in mass spectrometric
studies of HMX and RDX decomposition; and (b) some very interesting results on
Infrared Multiphoton Dissociation.

A. Products Involving Reduction

Probably the one recent development most pertinent to the question of
catalysis 1 fIM9W and RDX decomposition by B1 0H n and B1 2H1 2  is the
detection of products, such as formamiAe,lJ-methylformamide, N,N-
dimethylformamide, dimethylaminoacetonitrile, etc., from decomposition of pure
HMX and RDX.

Some of these products have probably been detected in previous mass
spectrometric studies on 4hM and RDX decomposition, but misidentified because
their molecular weights are similar to those of materials which are, or at
least might logically be expected to he, products of HWX or RDX
decomposition. Typical examples of such products include formamide
(detected14 as its protonated form, m/e 46) (same as No2 ); dimethylformamide
(detected 1 4 as its protonated form with m/e 74) (same as H2 C=N-NO2 );
dimethylnitrosamine (detected as its unprotonated (m/e 74, same as H2 C-N-NO2 )
or protonated (m/e 75, same as protonated H2 C=N-NO2 )) forms.

ie have already alluded above to the effects of added BroHIO= and BI2HI2
on formation of these products.
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Initially, formic acid, formamide, N-methylformamide, N,N-dimn[hyl-
formamide and dimethylnitrosamine were detected by GC-FTIR studies on HMX
and RDX decomposition. Also detected were several unidentified compounds,
which were beleived to contain C-nitroso, C=N double-bonded, ketone and amide
groupings.

The use of pyrolysis together with Atmospheric Pressure Chemical
Ionization Mass Spectrometry (APCI-MS) led to the detection, from RDX
decomposition, of pjnypal nongaseous products with molecular ions oi m/e 46,
60, 74, 75, 85, 98. Surprising results emerged from exRmination of the
daughter-ion mass spectra of the decomposition products ffm isotopically-
labeled and unlabeled HIX and RDX. Use of deuterium and N-labeled samples
of RDX allowed deduction of the molecular formulas of these species; m/e 46
proved to be not NO2 but protonated formamide; mie 60 proved to be protonated
N-methylformamide; m/e 74 proved to be not H2 C-N-NO 2 but protonated N,N-
dimethylformamide; and m/e 75 proved to be not protonated H2 C-N-NO2 but
protonated N,N-dimethylnitrosamine. The products with m/e 85 and 98 -roved to
be the protonated forms of dimethylaminoacetonitrile and of a 1,3,5-triLzine
oxide respectively. (The protonation is beleived to have taken place ins2l-'
the mass spectrometer, the original products being the unprotonated forms.)
The effects of added K2B1 01110= and K2B1 2H1 2ý salts were also studied,'those
were described earlier in the present report.

Many of these same products were also detected from studiesi 6 in which
small solid samples of HMX and RDX were heated in an alumina reaction cell and
product concentrations during pyrolysis were studied by allowing small amounts
of products to escape through an orifice into a low-pressure chamber and
studying the electron ionization (El) mass spectra of the products. Tim*.-',f-
flight velocity spectra were used to determine the molecular weight of the
products contributing to each ion-mass signal arriving at the detector; in
this way it was possib]L to eliminate the ion-fragmentation peaks and
concentrate on the actual products of thermal decomposition. Both gaseous and
nongaseous products were studied. Although the ElMS technique di1 4 not permit
structures to b 5determined as in the triple quadruipole CI study, the use of
deuterated and N-labeled samples gave fouulas consistent with the
structures measured under APCI conditions.

Some possible chemical mechanisms for formation of these reduced,
hydrogenated products are discussed in Section C.below.

B. Infrared Multiphoton Decomposition

Another very interesting recent piece of work on RDX decomnposition is
the infriled multiphoton dissociation molecular-beam study by Zhao, Hintsa,
and Lee. In this work, a molecular beam of RDX nolecules was crossed by a
pulsed CO2 infrared laser beam; vibrational excitation by this beam was used
to simulate thermal excitation. The products were analyzed by mass
spectrometry. Products having m/e 120, 119, 102, 80-82, 74, 56, 46, 44, 42,
26-30, and 12-17 were observed. No signal was detected between m/e 120 and
222 (RDX molecular ion). Veiocity distributions were used to help identify
the sources of these products. The results were interpreted in terms of two
simultaneous mechanisms for the gas-phase decomposition of RDX: (a)
synchronous, one-step decomposition of RDX into three molecules of H2 C=N-NO2
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(m/e 74); and (b) N-NO2 cleavage followed by stripping of HNO2 to give 1,3,5-
triazine (m/e 81). H2 0=N-NO2 was considered to decompose by two channels, one
leading to formation of H2 CO and NO and the other leading to formation of HCN
and HNO2 .

However there are a number of factors which should be understood better
before applying these gas-phase results and mechanisms uncritically to
decomposition in the condensed phase. These include the question of, to what
temperature does the type and degree of vibrational excitation provided by the
infrared laser excitation employed 3 1 correspond? The decomposition of HMK and
RIX produces predominantly N2 0 and H2 CO at lower temperatures and
predominantly species such as NO2 , HCN, etc., at higher tempeutures. The
relative amounts of products such as HCN, NO2 , and HONO given seems to be
much larger than relative amounts of products such as N20 and H2 CO, suggesting
that the results apply to a high temperature process. Thus the question of
the applicability of these results to decomposition at lower temperatures
deserves further investigation.

Another question involves the possible role of excitation and
deexcitatior by intermol.;cular collisions in condensed-phase decomposition.
When vibrational excitation takes place stepwise by these collisions rather
than in one btep, will the RDX molecules go to a point where they decompose to
give three H2 0=N-N02 from one step, or will they undergo stepwise
decomposition or "unzipping" before reaching this point? Furthermore, will
the molecules which reach highly-excited vibrational states decompose by
concerted cleavage or will stepwise decomposition become more important?

It also seems worth mentioning that although as pointed out above, the
detection of products other than H2C=N-N02 with masses of -4 and 75 suggests
that many earlier attributions of m/e 74 and 75 to unprotonated and protonated
H2 C=-N-N? may have been in error, the mass 74 peak described by Zhao, Hintsa
and Lee is probably in fact due to ' 2 0=N-NO2. This follows from the high-
vacuum conditions used, and from the fact that the temperatures attained by
the unreacted RDX (130 0 C and 154*C) seem low enough to preclude thermal
decomposition prior to vibrational excitation by the laser beam. However for
complete rigor, isozope studies might be helpful here.

C. Chemical Mechanisms for Decomposition of the Pure Nitramines HM? and RDX

Overall Decomposition Mechanisms. Possible chemical mechanisms for
decompesitiun of pure HMX and RDX have been discussed previously. 2 8 3 0  The
details are still about as uncertain as they were at the time of the earlier
discussion- the main change seems to be that the concerted decomposition
pathway (concerted depolymerization to three (RDX) or four (HMX) molecules of
12 C_-N-NO2 ), which was mentioned previously, 2 8 has had its credibility greatly
enhanced by the infrared multiphoton decomposition (IRMPD) results of Zhao,
Hintsa, and Lee.31

The paper of Zhao, Hintsa, and Lee 3 l includes results suggesting that RDX
decomposition proceeds primarily by concerted depolymerization to 3H2 CJN-NO2
which decompose to either N2 0 and formaldehyde, or by HONO elimination to HCN
and HONO. However this result corresponds to a thermal decomposition at a
very high temperature (ca 1000 0 C); there is at least one piece of evidence
which suggests that at a lower temperature either (a) stepwise decomposition
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of RDX involving initial N-NO2 cleavage, followed by breakup of the resulting
nitrogen-,-entered radical to H2CN" and two molecules of H2 C-NjO 2 or (b) N-N0 2
cleavage of H2 C-N-NO2 may take place. This is the detectio 23 by ESR, of the
radical H2 CN', the formation of which seems hard to explain except by one of
the ab" "e mechanisms.

Thus, it seems quite possible that stepwise ring cleavage and loss of two
molecules of H2 C=N-NO2 from the nitrogen-centered denitro-RDX radical, and/or
N-NO2 cleavage of H2 C-N-N0 2 to give H2 CN" and NO2 could be taking place at the
lower temperature ranges (200-300 0C) in which the decomposition of HMX and RDX
is being studied.

Formation of R-duced and Hydrogenated Species. Because of their possible
importance to mechanisms of borohydride catalysis, it seems appropriate to
discuss possible mechanisms for formation of the hydrogenated materials
(Formamide (HCONH 2 ), N-methylformamide (HCONHCH 3 ), N,N-dimethylformamide
(HCON(CH 3 ) 2 ), dimethylnitrosamine (CH3 N(NO)CH3 ), and dimethylaminoacetonitrile
((CH 3 ) 2 NCH 2 CN) from pure HMX and RDX.

It is known 2 8 that H2 is formed in decomposition of HMX and RDX. The
mechanisms for its formation are uncertain, but presumably they involve either
dimerization of H' or reaction of some source of H" (for example H2 CN" or
HCO0) with another H-source molecule or with H'. Since their large hydrogen
content suggests that the formamide derivatives, dimethylaminoacetonitrile,
etc., are the product of reduction/hydrogenation reactions, it seems
reasonable to suspect that they share a common source with, or possibly are
formed from, the H2 .

A Pgsible source for formamide might be partial hydrolysis of HCN which
is known to be formed, along with water required for its hyarolysis, from
HIIX/RDX decomposition.

It is difficult to predict just how HCN, formamide and related compounds
might react under the exact conditions present in molten HMX/RDX at
temperatures in the range ca 200 - 800 degrees. However it is known3 3 that
catalytic hydrogenation, or reduction with many common reducing agents, of
nitriles and amides generally leads to the corresponding amines. Therefore it
seems logical that HCN or formamide could conceivably be reduced to
methylamine, CH3 NH2 , by the hydrogen atomas or precursor present.

[H)
HCN --------- > CH3 NH2

[H]
HCONH2 --------- > C113 NH2

CH3 NH2 + HCONH 2 --- > HCONHCH 3 + NH3

[H]

HCONHC13 - - - - - - - - - > CH3 NHCH3
CH3 NHCH 3 + HCONHR --- > HCON(CH 3 ) 2 + NH2 R(R=H or CH3 )

Nitrosation
CH3 NHCH 3 - - - - - - - - - - -> CH3 N(NO)CH 3

SCHEHE I
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Methylamine formed in one of these ways could then redct with formamide
to give N-methylformamide, which could be reduced to dimethylamine; this could
then react, by nucleophilic displacement at the carbonyl group, with formamide
or N-methylformamide to give dimethylformamide. Nitrosation of dimethylamine,
by nitrogen oxides (NO and NO ) known 2 7 to be formed in HMK and RDX
decomposition, could lead to dimethylnitrosoamnine.

Formation of (CH3 )2NCH 2 CN and related compounds could be explained by
dimerization or oligomerization of H2CN', which is known to be formed in
thermal decomposition of HMX and RDX. Tail-to-tail dimerization of H2 CN"
followed by rearrangeient of hydrogen atoms could lead to H2 NCH 2 CN, which
could react with formamide to yield HCONHCH 2 CN; this could then hydrogenate at
the carbonyl yielding CH3 NHCH2 CN. The above process could then be repeated
adding another methyl group and ending up as (CH3 ) 2 NCH2 CN. Another pathway
might begin with dimerization of cyanide radical to give cyanogen (NC-CN),
which might react with (CH3 ) 2 NH followed by hydrolysis and/or hydrogenation to
give (CH3 ) 2 NCH 2 CN.

A large number of possible pathways to these hydrogenated products
(formamide and its methylated derivatives, dimethylnitrosamine and
(CH3 ) 2 NCH 2 CN) can be written; the possibilities are limited primarily by how
many reaction pathways for nitriles and carbonyl groups are remembered from
eiementary organic chemistry. The main feature of the above is probably the
source of the reduction; it presumably arises from the hydrogen atom source(s)
which also give rise to the H2 formed in HMX and RDX decomposition.

If they occur, these apparent H-atom hydrogenation pathways would be
mechanistically significant, since their occurrence suggests that the H-atoms
should also be available for autocatalysis 28 ' 2 9 by attack on the nitro oxygens
of HMX and RDX.

Another redox reaction that may be involved in the formation of the
hydrogenated products is suggested by the work of Cosgrove and Owen, 3 4 who
reported formation of an amine nitrate from RDX decomposition in a static
system just below its melting point at 195*C. They were unable to identify
the amine, but suggested it might have been trimethylamine, which they
suggested could have been formed from decomposition of hydroxymethylformamide
(a known decomposition product of HMX and RDX) with formaldehyde, via the
following mechanisms:

2HOCH2 -NH-C(=O)H + CH2(NH-C(=O)H) 2 + H2 0 + CH2 0

HOCH2 -NH-C(=O)H + 3CH2 0 + (CH3 ) 3 N + CO2 + H2 0

SCIEME II

It is then possible that reduction of CH2 (NH-C(=O)H) 2 and/or 2HOCH2 -NH-C(=O)H
might lead, possibly via via CH2 (NH-CH 3 ) 2 or HOCH 2-NH-C(=O)H respectively, to
dimethylamine ((CH 3 ) 9 N•). Furthermore, oxidation of trimethylamine ((CH3 ) 3 N)
might lead to such compounds as dimethylformamide.
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V. SOME POSSIBLE CHEMICAL MECHANISMS FOR CATALYSIS OF HMK AND RDX
DECOMPOSITION BY BIoH10 = AND B12 HI2=

In this section we will discuss some possible chemical mechanisms which
may be responsible for catalysis of HMK and RDX decomposition and combustion
by boron-containing salts such as K2B10 H1o and K2 B1 2 H1 2 .

A striking manifestation of the rate-enhancing effect of these salts on
HMI and RDX decomposition is provided by the DSC curves of the catalyzed and
uncatalyzed nitramines.1 3 The melting endotherm of RDX at ca 2050C and its
broad, intense decomposition exotherm at ca 225-250*C disappear and are
replaced by a sharp, exothermic spike in the region 203-224*C; this spike is
so narrow and intense that it appears to have no width at all. Examination of
these curves 1 3 suggests that the rate enhancement occurs immediately on
melting of the RDX, since for the catalyzed samples the melting endotherm
disappears and the reaction becomes rapid at precisely the temperature (ca
205 0 C1 at which uncatalyzed RDX melts. Since these studies were done in open
pans,13 which enabled the gaseous products such as nitrogen oxides to escape,
it was suggested that direct nitramine-catalyst interactions occurred.
However, some gas-catalyst interations could still occur under these confined
conditions. The object of the following discussion will be to explain this
large decomposition-rate enhancement.

It is possible to conceive of at least three general classes of initial
steps which might contribute to catalysis of HMK and RDX decomposition by
borohydride salts such as K2 B10 H1 0 and K2 B12 H12 :

1. Decomposition of nitramine is initiated by direct reaction between
nitramine and borohydride; for example, as discussed below, by electron
transfer, by attack of a B-H hydrogen on nitro oxygen of the nitramine or by
some combination of these mechanisms.

2. An early decomposition product of the nitramine, for example NO2 ,
reacts with the catalyst to form products, possibly free radicals, which react
further with the nitramine, resulting in catalysis.

3. Unimolecular decomposition of the catalyst generates products or
radicals which react with nitramine, causing it to decompose faster than would
otherwise be the case.

At least at low temperatures, Class 3 seems less likely than the others,
in view of the reports13,17, 2 2 that when heated in vacuum or in an inert
atmosphere, alkali metal salts of BIQH1o and BI2HI 2 = are stable up to
temperatures in the range of 600-800 C. The available data offer support for
both Class 1 and Class 2. The intense nature of the above rate enhancement,
its correlation with increased contact due to melting of the RDX, and the
open-pan nature of the studies suggests that I may be the more likely. Note
however that RDX and HMK decompose below their melting points and that the
decomposition accelerates on melting.2 Therefore it seems premature to
conilusively rule out explanation 2, especially with regard to gaseous,
strongly oxidizing products such as NO.

Possible 1-ypes of chemical mechanisms that might be operating include the
following:
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A. Attack of a B-H hydrogen of the catalyst on the HMX or RDX molecule,
most likely at the oxygen of the nitro group.

B. An electron-transfer reaction between the catalyst and the nitramine
molecule, with the nitramine assuming a negative charge and the boron-
containing anion assuming one less negative charge than before.

C. Primary decomposition of the nitramine, followed by reaction of one
or more of the products (most likely NO2 , although other products, especially
other nitrogen oxides such as NO and N2 0 are also plausible candidates) with
the catalyst, generating more radicals or other intermediates which catalyze
the decomposition further.

D. Another possibility might be an equilibrium involving the boron-
containing salt in which a B-H bond breaks thermally to give a hydrogen atom
and a boron-centered radical; hydrogen atoms formed in this way could dimerize
to H2 . The hydrogen atoms could also react with nitramine, presumably at the
oxygen atom of the nitro group, and the resulting hydroxynitroxide could
decompose to give OH* and nitrosoamine; or to give HONO and nitrogen-centered
denitro-RDX radical.

Mechanisms A and B are examples of Class 1, mechanism C is an example of
Class 2, while mechanism D is an example of Class 3, and accordingly seems
less likely except at higher temperatures.

A number of the observations in the preceding sections are consistent
with the idea that the subject catalysis may involve hydrogen-atom donation by
the borohydride (BIoHIo= and B12 H1 2 =) anions. These include the follewing:
(a) (Section IIB) the relative amount of reduced products (formamide
derivatives, etc.) tends to increase on addition of catalyst.13, 1 5  (b) It was
reported22 (Section III) that heating of Cs2B3IoHI 0 and Cs2 B 2H1 2 in vacuum led
to evolution of almost I mole of H2 per mole of salt, accompanied by a slight
endotherm in the region around 600-650 0 C. Examination of the gas-evolution
curves shows that while evolution is fastest in the 600-650*C region, there is
for both compounds a long tail to the low-temperature side of the volume-time
plot. 'This remains visible down to just above 400*C, and there may
conceivably be a very small amount at even lower temperatures. In any case,
the high-temperature evolution of hydrogen gas (H 2 ) suggests the possibility
that even at low temperatures the B-H bonds might be sufficiently labile as to
be susceptible to attack, possibly by nitro oxygens on the nitramine. (c) In
connection with (b) it seems worthwhile to mention the observations1 3 that
when ((CH 3 ) 4 N)jB12119 was heat-treated at 460*C it retained its catalytic
activity toward RDX decomposition, but lost it when the heat-treatment took
place at 760 0 C. Elemental boron had no catalytic activity.

One possible mechanistic scheme for the initial phases of catalysis might
be as follows:

oSNoN 02NO
NN )

/B-H + 0 J-iI\.,, I0 2 1- > 'B' + H-O--NN , NNO2
S M /
SCHEME III
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where a nitro group of RDX reacts with a B-H bond of the anion of the catalyst
salt (BIoH 1 o= or BI2HI2).

NO2  NO2

B' + ON N- N NN0 2  -B-0_-NONN. NNO2

SCHEME IV

NOe

RO' + NN-. ,NNOi - Products

R-O-N- NVNN JN

N02,

rK>
RONO * K, _, -NNU2 " Products

SCHEME V

In Scheme V, R = H" or '. Note however that the exact details in the
above schemes are uncertain. In particular, there is at present not enough
information to evaluate the importance, if any, of electron transfer
reactions.

A variation on the theme of electron transfer reactions might be a
combination of electron-transfer and hydrogen-transfer mechanisms; such a
combination has been suggested in the Russian literature3 5 for reaction of
difluorodinitromethane with a varietey of nucleophilic reagents, includirg
sodium borohydride. The radicals produced were studied by ESR and trapping
techniques, and identified as H' and "CF2 NO2 . Their formation was
rationalized in terms of the following mechanism:

CF2 (N02) 2 + BH4  C--- CF2 (N02) 2 D H+ +BH 3

0._• CPzNO 2 +NO 2 
0

CF .2 (NO2) 2 CFN2+N0

SCHEME VI
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An analogous mechanism for catalysis of HMX/RDX decomposition by BoH10,o or
B1 2Hl2' could be written as follows:

RDX + BI12 -- RDX + H + B12 H11 0

ROX + B12 H -- 0 -> RDX + H" + BI2 HA

ROX 0 Products

ROX + H" - Products

SCHEME VII

VI. REIATIONSHIP TO COMBUSTION OF VHBR PROPELIANTS

We now attempt to show how the above may relate to the combustion of VHBR
propellants. The burning of a series of VHBR propellants has been studied and
photographed in a transparent chamber. 3 6  The first phase of combustion was a
relatively slow porous burning that proceeded through the sample, leaving
behind a porous residue that retained the form and about 90% of the weight of
the original sample. There was then a transition to very rapid combustion
throughout the entire sample, accompanied by some deconsolidation.

Since the propellants contained about 10% of boron compound (referred to
as "fuel", the figure of 90% of the original weight remaining after the first
phase makes sense if some of the boron hydride remained solid after the first
phase, and absorbed some of the oxygen from the -NO 2 groups on the
nitramine. The weight lost presumably was due to gaseous products of HMX/RDX
or TAGN decomposition.

It is possible to imagine this first phase of combustion as beginning
through either of two processes: (a) Nitramine melts and on contact of liquid
nitramine with solid boron hydride, decomnosition begins, possibly by the
bimolecular H-transfer process. This lcads to increased heating which causes
more nitramine to melt; nitramine melting is driven through the sample by the
heating until the entire sample has reacted in this way, with each molecule of
boron hydride promoting decomposition of approximately one mole of
nitramine. At this point, the sample is porous and surrounded by nitramine-
decomposition gases. Combustion and heat release then begin in earnest in the
gas phase, possibly catalyzed further by boron compounds in either the gas or
solid phases. (b) Nitramine begins to decompose and an early decomposition
product, poss 4 bly NO2 , reacts with boron hydride causing catalysis of
nitramine decomposition as described above. Each molecule of boron hydride
causes decomposition of approximately one mole of nitramine, and finally the
sample is porous and is surrounded by nitramine-decomposition gases.

13



Combustion and heat release then begin in earnest in the gas phase, possibly

catalyzed further by boron compounds in either the gas or solid phases.

VII. SUGGESTIONS FOR FUTURE WORK

On the basis of the above discussion, it is possible to make a number of
suggestions for future work that might be helpful in understanding the
catalytic action on nitramine decomposition of salts c3ntainin, the anions
BIoHI0= and B1 2 H12 ".

First, note that much of the above discussion is based on studies on
lithium, sodium, cesium and rubidium salts of the anions B10H10 and
B1 H12 . It would be useful to have some of studies repeated on the potassium
and tetramethylammonium salts that actually seem to be of primary interest as
catalysts.

Quantitative kinetic studies on catalysis by these salts are also
needed. Another type of study that would be of interest is H-D isotope effect
studies. Comparison between salts of BOH = and B%2 H1 2 on the one hand, and
their deuterated analogs B10D1  and B D2= on the other, could yield
valuable information on the role of the B-i bonds in catalysis. Careful
control of particle size of both nitramine and catalyst would probably be
necessary, in order to obtain results with quantitative significance.

Further information on reactions of these salts with nitrogen oxides such
as NO9 , NO, and N2 would also be helpful in evaluating the catalytic role of
reaction between catalyst salts and product gases.

Another type of study that would be useful would be studies of the effect
on N scrambling between un- and fully (all nitrogens, both nitro and amino)
labeled HMX and RDX, of BIoHIo= and B12"12= salts. These studies would be
useful in detecting any mechanism shifts involving N-NO2 cleavage equilibria.

Finally, identification of the species referred to in the section
entitled, "Catalyst Effects on Formation of Less-Volatile Products" as
"Unknown A" (Is this 1,2,4-oxadiazole?). An understanding of the structure
and formation mechanisms of this material seems especially interesting in view
of the possibility that the temperature-variation in the catalyst effect on
its formation may be related in some way to the apparent evolution of H2 from
Cs 2 B1 0 Hj0 and CS2 B1 2 H1 2 in the temperature range of ca 600-650 0 C.
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